
Session T1A

Be a Computer Scientist for a Week
The McGill “Game Programming Guru” Summer 

Camp 
Alexandre Denault, Jörg Kienzle, and Joseph Vybihal

McGill University, adenau@cs.mcgill.ca, joerg@cs.mcgill.ca, jvybihal@cs.mcgill.ca

Abstract -  Motivating  high  school  students  to consider 
Computer Science as their  future field of  study at  the 
university  level  is  a  challenging  endeavor.  This  paper 
describes the McGill Computer Science Summer Camp 
targeted  at  high  school  students  from grade  10  to  11 
(ages  15 to 17).  We first  motivate  our choice  of  using 
computer  games  as  the  main  camp  theme,  and  then 
present the teaching methodology used throughout the 
camp. A day-by-day breakdown of the camp is provided, 
as  to  better  illustrate  the  distribution  of  the  material 
throughout the week and the evaluation methods used to 
track the progress of the students. We also present the 
game environment we developed in which the students 
exercise  their  problem  solving  skills  during  the  lab 
sessions. We conclude by illustrating the positive effect 
of the camp, using a combination of code analysis and 
evaluation questionnaire filled out by the students and 
their parents.

Index Terms - About four, alphabetical order, key words or 
phrases,  separated  by  commas  (for  suggestions:  Camera-
ready,  FIE  format,  Preparation  of  papers,  Two-column 
format).

I. INTRODUCTION

In general, high school students do not get exposed to the 
broad variety of  specialized research areas  that  Computer 
Science offers and that are available to students after they 
complete the first two years of undergraduate classes. Often, 
Computer  Science  is  mistaken  to  be  focused  solely  on 
programming, which puts our field into a completely wrong 
light.  As  a  result,  Computer  Science  programs  at  the 
university level are often overlooked, or confused with other 
more  programming-oriented  degrees.  It  also  happens  that 
high school students who have not on their own developed 
an  interest  in  computers  do  not  choose  the  appropriate 
optional courses that allow them later on to pursue a major 
degree in Computer Science or Software Engineering. With 
the  idea  of  changing  that  situation  and  attracting  bright 
students  towards  science  and  Computer  Science  in 
particular,  the  School  of  Computer  Science  at  McGill 
University  began  to  organize,  starting  Summer  2005,  a 
Computer  Science  Summer  Camp targeted at  high school 
students from grade 10 to 11 (ages 15 to 17). In the camp, 
the students take on the role of the computer scientist and 
are  presented  with  several  problem  solving  challenges. 

Along  the way,  they are  introduced  to  various  Computer 
Science  fields,  such  as  algorithms,  graphics,  physics, 
simulation and artificial intelligence.

II. COMPUTER GAME BACKGROUND

Many young people are fascinated by computer games. This 
often translates into a desire to develop their own games. It 
is only natural to exploit this enthusiasm, to motivate them 
and increase their interest in Computer Science.

Games and Computer Science

Creating a successful modern video game requires in-depth 
knowledge of many areas in Computer Science, especially if 
the  goal  is  to  create  an  immersive  virtual  environment, 
where players forget their current environment and become 
completely focused on the game. Computer Graphics are an 
essential  component  of  any video game,  given its  role  in 
communicating the game to the player. However, the fields 
of physics, numerical approximation and simulation play an 
equally  important  role,  as  they  are  used  to  describe  the 
behavior of objects in a virtual world. In addition, the proper 
implementation  of  challenging  computer-controlled 
opponents can only be done with a proper understanding of 
artificial  intelligence.  Furthermore,  it  is  also  necessary  to 
consider  the  importance  of  multiplayer  games,  where 
various  fields,  such  as  distributed  systems,  concurrency, 
networking and fault tolerance, are critical. 

Games  not  only  push  all  these  areas  of  Computer 
Science to the extreme, but also bring together artists and 
technically  skilled  people,  allowing  everyone  to  express 
their creativity.

Games and Teaching

The  concept  of  organizing  a  summer  camp  to  promote 
Computer Science is not new [1]-[2]. This is not surprising, 
given that the positives effects of such camps on kids have 
been proven [3]. University of Alberta’s Summer Camp is 
particularly  interesting,  since  it  shares  our  strategy  of 
teaching Computer Science using game development. Their 
camp  focuses  greatly  on  content  generation  using  visual 
tools,  such  as  Neverwinter  Nights  [4],  and  allows  their 
participants to create virtual worlds. This is very different 
from  our  camp,  where  the  focus  is  placed  on  problem 
solving using textual programming languages.

Vrjie University recently finished developing VU-Life 
2 [5], a game designed to promote Computer Science and 

978-1-4244-1970-8/08/$25.00 ♥2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
38th ASEE/IEEE Frontiers in Education Conference

T1A-1



Session T1A
their  university based on the Half-life  2  SDK. The game 
allows students to visit the faculty of Computer Science at 
the  university.  After  playing  the  game,  students  are 
encouraged  to  create  their  own variation  of  the  game by 
using the Half-life game development tools.

Some  Universities  also  use  games  within  their 
Computer Science courses. Rudy Rucker, of San Jose State 
University,  teaches  software  engineering  using  games  as 
context  for  implementation  [6].  Joe  Warren,  of  Rice 
University, teaches  a class  where students  are required to 
work as a team to complete a large-scale game project [7]. 
These classes, however, use up an entire semester, and are 
designed for undergraduate students that have already taken 
beginner programming classes.

III. TEACHING METHODOLOGY

The Summer Camp is a one week event. The last day of the 
week  is  reserved for  lab work and the  final  competition. 
Each other day is assigned a topic, and starts with a keynote 
presentation  introducing  that  topic.  This  presentation  is 
given by an industry invited speaker, who demonstrates a 
real-life application of the day’s topic.

The keynote is then followed by a 90 minutes in-class 
lecture (with a 5 minutes break) presented by a university 
professor or lecturer. These lectures elaborate on the day’s 
topic, focusing on the knowledge that the students require 
for the afternoon’s lab session and the A.I. competition.

To  successfully  create  an  A.I.  to  pilot  a  ship  in 
Spaceracer, students need to learn how to program in Java, 
how to design a decision tree and devise an optimal solution 
to navigate a spaceship through a field full of asteroids. To 
give a broader overview of Computer Science, the students 
are  also  introduced  to  3D  computer  graphics,  automated 
content generation and simulation. Given the large quantity 
of material that must be taught, we opted for a traditional 
type of lecture. In our experience, interactive lectures given 
in the computer labs have a tendency to be slower.

The afternoons are used as lab sessions, in which the 
students are split  into “research” groups of 2 or 3 people, 
and focus on solving a series of progressively more difficult 
game-programming-related exercises  in the context of our 
Spaceracer environment. Once they successfully complete 
their exercises, students are encouraged to start working on 
the code for the team-competition that is held on the final 
day.

Language Subset

Given  that  the  camp  only  lasts  one  week,  it  is 
unrealistic  to  try  and  teach  the  students  object-oriented 
programming. Thus, our game programming framework is 
designed so that students are only required to understand a 
small  subset  of  features  found  in  a  typical  programming 
language:

• Variables and how to use them,
• Standard  types  (integers,  floating-point  numbers, 

Booleans etc.),

• Calling functions and using their return values,
• Boolean logic (true, false, and, or),
• IF statements,
• Iteration and looping.

It was greatly debated if we should ask students to write 
new functions.  However,  in  the  end,  it  was  decided  that 
there  was  little  benefits  in  teaching  them  how  to  write 
methods  and time  would be  better  spent  focusing  on the 
above points.

IV. SPACERACER

In  order to run a successful summer camp, we needed to 
develop a computer game that would keep the high school 
students  motivated during the  whole  week.  We wanted a 
game with a competitive aspect, as to keep the high school 
students  motivated.  However,  we  decided  early  that  the 
game should be as non violent as possible, thus eliminating 
any  game  design  that  would  involve  players  directly  or 
indirectly attacking each other.

Thus,  we  created  Spaceracer,  a  game  where  players 
must navigate a space ship along a horizontal race track as 
fast as possible, while avoiding deadly asteroids and comets. 
Students must write a simple A.I. pilot1 that safely navigates 
the spaceship through the race, avoiding all obstacles. 

Working  on  such  a  game  exposes  the  students  to 
various Computer Science areas, such as graphics, artificial 
intelligence,  physics  and  simulation.  It  was  therefore 
possible  to  design  all  of  the  lab  sessions  around  the 
Spaceracer central theme. One advantage of using a racing 
game is that a race only lasts a few minutes. That way, the 
students  don’t  loose  too  much  time  during  testing.  In 
addition, the game rules and physical laws can be designed 
to be fairly simple. That way, the students do not have any 
conceptual problems understanding the game / physics, and 
hence are able to concentrate on the essence of the problem 
at hand and on the implementation challenge.

The Race

In Spaceracer, the race track is a horizontal area of variable 
length. The top and the bottom of the track are guarded by 
walls.  The spaceship’s initial  position is  on the start  line, 
completely  on  the  left  of  the  track.  We  used  a  simple 
Cartesian  coordinate  system  to  encode  the  position  of 
objects. The origin is placed at the center of the start line. 
After a short countdown, the race begins. The pilot of a ship 
can accelerate  or  decelerate,  move up or  down. The ship 
cannot,  however,  move backwards.  Moving up and down 
slightly  slows  down  the  forward  movement.  In  addition, 
each ship has a shield that, when activated, protects the ship 
from  any  damage  for  five  seconds.  However,  once  the 
shield  deactivates,  it  can  not  be  re-used  until  it  is  fully 
recharged  by  the  shield  generator,  which  takes 
approximately 30 seconds.

1 Note that the A.I. code the students implement is basically a decision tree. 
By no means are the students expected to implement a learning algorithm.

978-1-4244-1970-8/08/$25.00 ♥2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
38th ASEE/IEEE Frontiers in Education Conference

T1A-2



Session T1A
The Race

In  order  to  keep  the  students  motivated  throughout  the 
week, we announced a competition to be held on the last 
day  of  the  camp.  The  ultimate  goal  for  the  students  is 
therefore not only to build a A.I. pilot that can successfully 
navigate  the  race,  but  their  A.I.  must  do  so  faster,  and 
hopefully  in  a  smarter  way,  than  the  A.I.  of  the  other 
students.  At the end of the camp, the student’s A.I.  pilots 
compete on tracks of varying  difficulty.  The team having 
written the A.I. obtaining the best overall score wins.

Implementation of the Spaceracer Platform

We decided to implement  Spaceracer in Java [8]  for 
multiple reasons. First and most importantly, we wanted a 
simple language were students would not have to deal with 
complex issues such as memory management and pointers. 
In  addition,  when  errors  do  occur,  either  at  runtime  or 
compile  time,  Java’s  error  message  is  quite  explicit, 
facilitating  debugging  activities.  Secondly,  we  wanted  to 
give the students an introduction to a state-of-the-art object-
oriented programming language. A third advantage is that 
Java is multi-platform, thus making it easier for the students 
to bring the game home should we decide to distribute it.

Object-Oriented API

We wanted to keep the API for the students as simple 
as possible. To this aim, we modularized all the state and 
behavior that the students needed to access and modify the 
game  state  in  6  classes,  namely  Asteroid,  Comet, 
ShieldRecharge,  SpaceshipControl, Spaceship,  and 
Radar (see Figure 1).

The API itself is designed to be easy for the students to 
learn. This was achieved through the use of good software 
engineering  practices,  such  as  encapsulating  each 
component of the game in its own object. For example, a 
ship  can  detect  the  presence  of  asteroids  using  its  radar. 
Thus, the functionalities of the radar are encapsulated in the 
simple to use Radar object. In our experience, high-school 
students  have  no  problem  understanding  the  concepts  of 
objects  and thus can learn to use the API for  Spaceracer 
during the first day.  Most of the methods provided to the 
students have no side-effects on the state of the game. This 
prevents  the  students  from “breaking”  the  game,  even  if 
they experiment with different method calls.

V. TARGET AUDIENCE OF THE CAMP

At the beginning of the Fall session (September), the School 
of  Computer  Science  of  McGill  University  sends  out 
invitation letters to all high schools in the Montreal area. We 
ask them to identify several students that are strong in Math, 
Science, and other computer-related skills. Given the large 
amount  of  material  covered  and  the  short  length  of  the 
camp,  we  believe  that  a  student  with  a  weak  Math  and 
Science  background will  encounter  difficulties  during  the 

camp. In addition, students should be creative and able to 
work well with others.

On average, we received 30 applications each year, all 
of  which  were  accepted  to  participate  in  the  camp.  The 
students  that  participate  have  usually  little  or  no 
programming  experience.  They  do,  however,  have  some 
experience with the concepts of variables and Boolean logic. 
Thus  most  students  can  easily  learn  the  basics  of 
programming  in  one  day.  Experience  shows  us  that  the 
students  quickly  understand  that  finding  an  approach  to 
solving a problem and coming up with an algorithm is a lot 
harder than programming itself.

FIGURE 1
SPACERACER API

VI. COURSE MATERIAL

Day 1: Game Programming

The  first  day  is  dedicated  to  teaching  the  students  the 
programming  language  subset  they  will  need  during  the 
week.  The  day  starts  with  a  keynote  that  introduces  the 
challenges in game development. Students learn about the 
different  kind of  people needed to create  a game and the 
different challenges they face. The keynote is followed by a 
lecture  that  introduces  the  students  to  computers, 
programming languages and compilers,  focusing mostly on 
the subset presented in section 3. The examples used during 
the lecture are all inspired by the Spaceracer theme, which 
exposes them already to the context in which they are going 
to do their practical exercises.

Exercises

The exercises for the first day mainly center on teaching the 
students to move the ship. The first exercise requires them 
to write a simple key handler that captures key presses on 
the keyboard, and, depending on the key pressed, calls the 
appropriate  method  to  move  the  spaceship.  The  code  for 
capturing  key  input  is  already  provided.  Successfully 
completing  this  exercise  indicates  an  understanding  of 
method calls and if statements.

The second exercise requires students to write their first 
A.I. pilot for their ship. There is no obstacle in this race, so 
the code is very trivial. However, successful completion of 
this race demonstrates an understanding of the game’s main 
loop.

The  third  exercise  requires  them  to  avoid  their  first 
asteroid. This asteroid is placed directly in front of the ship 
and can only be avoided by moving the ship either up or 

978-1-4244-1970-8/08/$25.00 ♥2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
38th ASEE/IEEE Frontiers in Education Conference

T1A-3



Session T1A
down to avoid it. Students must thus learn to use the radar to 
detect the presences of asteroids and move on the Y axis. 

The  remaining  exercises  of  the  day  all  feature  races 
with  asteroids  placed  in  different  configurations.  These 
configurations  are  all  designed to  test  if  the  students  can 
come up with more elaborate logic for their AI pilot.  For 
example,  the  race  shown  in  Figure  2  is  impossible  to 
complete if asteroids are always avoided by moving up.

FIGURE 2
ASTEROIDS IN V CONFIGURATION

Day 2: Computer Graphics

The  theme  of  the  second  day  is  computer  graphics.  The 
keynote introduces the use of computer graphics in various 
domains, including the movie industry, medical imagery and 
video  games.  The  lecture  presented  after  the  keynote 
focuses more on the basic concepts  of  3D modeling,  i.e., 
polygons, surfaces, textures, lighting, cameras. In addition, 
students  are  introduced  to  a  simple  open-source  3D 
modeling software called Wings3D [9]. In order to improve 
the  students’  understanding  of  the  modeling  process,  we 
handed out play-doh to each student, asking them to form a 
sphere  or  cube,  and  then  try  to  model  a  spaceship  by 
deforming the initial body. 

In  the  afternoon  lab  sessions,  the  students  get  some 
hands-on  experience  with  Wings3D.  The  first  exercises 
focus  mostly  on  deforming  primitive  shapes  to  create 
complex ones. Students can then start the special project of 
the day,  which is to model their own spaceship. The ship 
they  model  can  then  be  used  in  the  final  Spaceracer 
competition  to  represent  their  team.  This  increases  group 
cohesion and motivates students to build a better A.I., given 
that it is “their” ship that participates in the race.

III. Day 3: Artificial Intelligence

The theme of day 3 is  artificial  intelligence.  The keynote 
speaker introduces the importance of artificial intelligence 
in games, especially in games where opponents and allies of 
the player are controlled by the computer. The presentation 
usually uses a specific game as a case study. 

The day’s lecture gives a brief overview of various A.I. 
techniques, outlining the difference between a scripted A.I. 
and a learning A.I. The lecture then concentrates on simple 
decision  making  and  path  finding.  A  key  point  of  this 
lecture is the importance of decision trees, especially when 
building  an  A.I.  for  Spaceracer,  as  shown  in  Figure  3. 
Students are also introduced to the advanced functionalities 

of  the  radar,  which  scans the  area ahead of  the  ship  and 
finds safe ranges void of asteroids.

Exercises

The  first  exercise  of  the  afternoon  is  designed  to  get 
students comfortable with the new radar functions. The race 
is composed of walls of asteroids with a small hole in each 
wall. It is impossible to complete this race using the greedy 
approach (always avoid the nearest asteroid) used during the 
first day. Instead, students must learn to find a safe spot and 
fly the ship towards it. This represents an important shift in 
logic for their A.I.; instead of avoiding targets,  they must 
aim for a specific one. Successful completion of this race 
indicates that they understand the new radar functions and 
were able to aim for specific targets. 

The remaining exercises of the day focus on improving 
their A.I. by choosing better spots to aim for. For example, 
ships  should  avoid  spots  if  they  are  too  small  for  them. 
Furthermore, if a ship is moving up to reach a specific spot, 
it should check for asteroids directly above it.

FIGURE 3
NAVIGATION DECISION TREE

Day 4: Game Physics and Content Generation

The  activities  of  the  fourth  day are  centered  on  physical 
simulations and automated content generation. In 2006, half 
of the lecture was dedicated to teaching the physics behind 
racing games. The talk described the various laws of physics 
that  can  be  found  in  games  and  how  they  are  often 
approximated. The following year, the talk was changed to 
content generation. Different methods of automated content 
generation  were  discussed,  such  as  maze  generation  and 
terrain generation. The second half of the lecture was pretty 
similar  in  both  years.  It  covered  some  more  advanced 
aspects  of  Spaceracer,  including  Comets  (2006),  Shield 
Recharges (2007) and dealing with impossible situations.

Exercises

The radar provided to the students has a limited range. As 
such, it is possible to make a decision that seems optimal at 
the moment, only to discover that the path is blocked later 
on. In addition, some of the races are randomly generated. 
Thus, a race could be generated where no safe path exist to 
reach the finish line.

978-1-4244-1970-8/08/$25.00 ♥2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
38th ASEE/IEEE Frontiers in Education Conference

T1A-4



Session T1A
To deal with these situations, all the ships are equipped 

with  shields.  These  shields  only last  a  limited  amount  of 
time and take 30 seconds to recharge. When faced with an 
impossible  situation,  the  only  solution  is  to  traverse  the 
obstacle using the shield.

The  exercises  of  the  day allow the  students  to  write 
code that deals with this situation. The races have multiple 
wall barriers, impossible to cross without shields. However, 
given the  proximity  of  these  barriers,  students  must  slow 
down their  ship  and allow the  shields  to  recharge  before 
crossing each barrier.

Day 5: Competition

No  keynotes  or  lectures  are  planned  on  the  fifth  day. 
Students  are  given  the  entire  morning  to  tweak  their 
artificial  intelligence  in  preparation  for  the  afternoon’s 
competition.  After  working  a  week  on  their  A.I.  pilot, 
students are curious to know how well their A.I. compares 
with the ones of the other students. 

Although the afternoon’s competition varies from 
one year to another, the format remains the same: all A.I. 
participate  in  a  series  of  different  races  and  are  ranked 
according to their performance.

VII. EVALUATION

Student Programming Skills

To evaluate the progression of the students throughout the 
week, statistics on the A.I.  code they wrote at the end of 
each day that involved programming, i.e. day 1, day 3, day 4 
and day 5,  were  gathered.  For  each team, the  number  of 
lines  of  code,  the  number  of  references  to  myShip,  the 
number  of  references  to  myRadar,  and  the  number  of  if 
statements was counted, both in 2006 and 2007 (see Table I 
and II).

TABLE I
STUDENT CODE COMPLEXITY 2006

Average number of . . . per team Day 1 Day 3 Day 4 Day 5
If conditions 6.14 9.43 15 18.29
Reference to myShip object 10 17.14 24.29 25.29
Reference to myRadar object 5.43 9.14 12.86 12.71
Number of brackets { } 6.86 11.29 20.14 22.43
Number of lines of code 41.29 59.71 105.57 107.71

TABLE II
STUDENT CODE COMPLEXITY 2007

Average number of . . . per team Day 1 Day 3 Day 4 Day 5
If conditions 3.91 5.18 14.73 22.82
Reference to myShip object 9.82 22 34.82 36.18
Reference to myRadar object 6.64 8.64 11.64 12.18
Number of brackets { } 6.09 15.73 25 26.45
Number of lines of code 55.73 103.18 144.55 150.64

The statistics revealed some interesting facts. There is 
steady growth in the code complexity in the first four days, 
but that progression decreases in the last day, when the final 
version is due. A detailed analysis of Day 4 code and Day 5 

code revealed that students used the final day to restructure 
their  code for  the  final  competition.  In  general,  the  code 
produced at  the end of  the fifth day is  a  lot  simpler  and 
contains much more commented code than at the end of the 
fourth day. For example, in 2006, at the end of the fifth day, 
the A.I. developed by the students averaged 107.7 lines of 
code. However, the average decreases to 82.6 if we ignore 
code that was commented-out.

This evolution in the code size can easily be explained. 
During the first four days,  when courses are given in the 
morning, the students spend the afternoon adding new ideas 
to their code. Thus each new day results in new features and 
improved behavior for their A.I. pilot. Only on the final day 
they take a step back and try to integrate all the different 
ideas into a single cohesive block. It is  important  to note 
that  as  the  student  experiment,  they  comment  out 
experimental code rather than deleting it. This explains the 
large presence of comments in the student’s code, especially 
on the final day.

Furthermore,  the  high  increase  in  the  number  of  if 
statements  on  the  fifth  day  (especially  in  2007)  can  be 
explained  by  the  improvements  students  made  to  their 
decision trees. Although this material was covered both on 
the third and fourth day, students didn’t  really master the 
material until  the fifth day. This demonstrates the need to 
improve the teaching methodology on this  subject for the 
following years, as the sharp increase should have occurred 
much earlier during the week.

Piloting Strategies

In 2006, two features were found in all the auto pilots: they 
activated  the  shield  when  a  collision  was  imminent,  and 
they reduced their speed when a certain number of incoming 
asteroids  was  detected  by  the  radar.  However,  the  only 
omnipresent feature found in all the A.I. in 2007 was the use 
of shields when a collision was imminent. This can be easily 
explained by the fact that the lecturer that first presented the 
idea  of  slowing  down  when  numerous  asteroids  are 
detected, was not available to teach in 2007. This illustrates 
well  the  influence  the  lecturers  have  on  the  student’s 
solutions and the importance of properly preparing in class 
examples and sample races.

Winning Strategies

The ship that won the competition in 2006, AI33, featured a 
relatively simple auto-pilot. When faced with an obstacle, it 
searched the map for the nearest clear spot and directed the 
ship towards that spot at full speed. This aggressive racing 
behavior helped it win during the easy races. However, the 
greedy  strategy  did  not  always  perform  well  in  more 
difficult races.

Firebird,  the second place winner in 2006, featured a 
smarter  algorithm  that  performed  very  well  during  the 
harder races. When faced with an obstacle,  this auto-pilot 
would search for the nearest open spot. Unlike all the other 
A.I.s, it  would also check the size of the spot. If  the spot 
was too small,  it  would instead aim for  the biggest  open 

978-1-4244-1970-8/08/$25.00 ♥2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
38th ASEE/IEEE Frontiers in Education Conference

T1A-5



Session T1A
spot.  It  should be noted that  this  feature was much more 
common in 2007, as many of the races featured small spots.

The most impressive student A.I. seen up to date was 
Asian Invasion,  the winner of the 2007 competition. This 
A.I. featured a very complicated, but detailed decision tree 
that allowed it to have the proper reactions to many different 
situations. The decision tree not only controlled movement 
on the Y-axis, but was used to calculate the maximum safe 
speed at which the ship could travel. Asian Invasion is also 
the only team we have seen so far that successfully used the 
distance equation (  22 yx + )  to determine if an asteroid was 
too close. Most teams tested the X and Y axis separately.

Student Feedback

In 2007, a questionnaire was distributed to the students both 
at  the  beginning  and  at  the  end  of  the  camp.  One  key 
question  required  students  to  describe  what  they  think 
Computer Science is. In the questionnaire distributed before 
the  camp,  common  themes  were:  “Doing  stuff  with 
computers”, “Programming” and “Studying what computers 
can do”. The same question was asked to the students at the 
end  of  the  camp.  This  time,  the  common  themes  were: 
“Understanding what you can do with computers”, “Science 
that  deals  with  computers”,  “Using  computers  to  solve 
problems” and “Programming”. 

The three first themes indicate that students understood 
the lesson we were trying to teach. However, the presence 
of  the  fourth  theme  might  indicate  that  we  still  need  to 
reduce the emphasis of programming in the course content.

Another important  result  of the 2007 questionnaire  is 
the  number  of  students  interested  in  studies  in  Computer 
Science. Before the camp, 50% of the students indicated a 
desired  to  pursue  a  career  in  Computer  Science. 
Surprisingly,  that  number  did  not  change  in  the 
questionnaire after the camp. However, an important result 
is that 20 out of 22 students expressed that the camp had 
positively improved their  view of Computer Science. The 
impact of this number can be better understood through the 
feedback  of  one  of  our  2006 student  which said:  “It  has 
definitively  impacted  me,  but  I’m  still  going  to  pursue 
Mathematics. But it made me think about how I could work 
with engineers using my math.”

VIII. CONCLUSION

In this paper we described the idea and organization of the 
McGill  Computer  Science  “Game  Programming  Guru” 
Summer Camp, organized in Summer 2006 and 2007 with 
the goal  of attracting bright  students  towards science and 
Computer Science in particular. The camp was targeted at 
high school students from grade 10 to 11 in order to awaken 
their  interest  as  early  as  possible.  This  allows  them  to 
choose the appropriate optional courses in their final high 
school  years  that  allow them later  on  to  pursue  a  major 
degree in Computer Science or Software Engineering. 

We showed in the paper the teaching methodology used 
to introduce Computer Science to high school students, and 

at the same time how to use a computer game theme to keep 
the students motivated throughout the week.

Based on the code evaluation of each team’s game code 
and  the  answers  obtained  through  a  student  feedback 
questionnaire we conclude that the camp was a big success. 
The responses showed an increase in the understanding, the 
interest  and  the  appreciation  of  the  field  of  Computer 
Science. 

In the end, to know if we actually achieved our concrete 
goal,  i.e.,  attracting  more  students  towards  Computer 
Science  or  Software Engineering studies  at  the School  of 
Computer  Science  at  McGill  University,  we will  have to 
wait  until  September 2008, when the first  graduates  from 
the Summer Camp will start their university education.

REFERENCES

[1] University of Saskatchewan 2006 Summer Camp, 
http://www.csss.usask.ca/2005/index.php?c=summercamp, September 
2006.

[2] Purdue University 2006 Summer Camp, http://www.cs.purdue.edu/, 
September 2007.

[3] J. P. Walsh, G. Crombie, J. Flanagan, and V. Hall, Positive Effects of 
Science and Technology Summer Camps on the Attitudes of Young 
Canadians: Initial Quantitative Evidence. Poster presented at the 62nd 

Annual Convention of the Canadian Psychological Association, June 21-
23, 2001.

[4] Bioware. Neverwinter Nights. http://nwn.bioware.com/, 2007.

[5] A. Eliens and S. V. Bhikharie, Game @ VU - Developing a Masterclass 
for High-school Students using the Half-Lide 2 SDK. In Game-On-NA 
2006 - 2nd International North American Conference on Intelligent Games 
and Simulation, pages 49 – 53. Eurosis, September 2006.

[6] R. Rucker, Software Engineering and Computer Games. Addison 
Wesley, 2003.

[7] S. Schaefer and J. Warren, Teaching Computer Game Design and 
Construction. Computer-Aided Design, 36(14), December 2004.

[8] J. Gosling, B. Joy, and G. L. Steele, The Java Language Specification. 
The Java Series. Addison Wesley, Reading, MA, USA, 1996.

[9] Open Source Community. Wings3D, http://www.wings3d.com/, 
September 2007.

AUTHOR INFORMATION

Alexandre  Denault,  PhD  Student,  School  of  Computer 
Science, McGill University, adenau@cs.mcgill.ca

Jörg  Kienzle,  Professor,  School  of  Computer  Science, 
McGill University, joerg@cs.mcgill.ca

Joseph  Vybihal,  Lecturer,  School  of  Computer  Science, 
McGill University, jvybihal@cs.mcgill.ca

978-1-4244-1970-8/08/$25.00 ♥2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
38th ASEE/IEEE Frontiers in Education Conference

T1A-6


